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Abstract—Coherent states achieve the Holevo capacity of a
pure-loss channel when paired with an optimal measurement, but
a physical realization of this measurement is as of yet unknown,
and it is also likely to be of high complexity. In this paper,
we focus on the photon-counting measurement and study the
photon and dimensional efficiencies attainable with modulations
over classical- and nonclassical-state alphabets. We first review
the state-of-the-art coherent on-off-keying (OOK) with a photon-
counting measurement, illustrating its asymptotic inefficiency
relative to the Holevo limit. We show that a commonly made
Poisson approximation in thermal noise leads to unbounded
photon information efficiencies, violating the conjectured Holevo
limit. We analyze two binary-modulation architectures that
improve upon the dimensional versus photon efficiency tradeoff
achievable with conventional OOK. We show that at high photon
efficiency these architectures achieve an efficiency tradeoff that
differs from the best possible tradeoff—determined by the Holevo
capacity—by only a constant factor. The first architecture we
analyze is a coherent-state transmitter that relies on feedback
from the receiver to control the transmitted energy. The second
architecture uses a single-photon number-state source.

I. INTRODUCTION

Electromagnetic waves are fundamentally governed by the
laws of quantum mechanics, and, as such, when fields at op-
tical wavelengths are used as the carrier in a communications
system, the rates of reliable communication are determined by
the Holevo capacity [1]. Although it is known that coherent
states achieve the Holveo capacity when coupled with an
optimal measurement, a physical realization of such a receiver
is not yet known. The highest photon efficiency systems that
have been demonstrated to date utilize on-off-keying (OOK)
and a photon-counting receiver, see, e.g., [2], [3], [4], [5], [6].
Although alternative architectures have been proposed that the-
oretically exceed the performance of OOK+photon-counting,
they require a large increase in complexity in return for a
small gain [7], [8], [9]. This has motivated us to investigate
the performance limits of photon-counting receivers.

In this paper we characterize the gap between conventional
OOK-+photon-counting and the Holevo limit, and illustrate
the performance of two novel schemes to reduce that gap.
The first utilizes a coherent-state transmitter that relies on
feedback from the receiver to the transmitter to shut off
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the transmitted pulse once a photon is detected. The second
uses a binary modulation consisting of vacuum and a single-
photon number state. The first architecture can be viewed as
a method to emulate the statistics of a single-photon number
state at the receiver, which is near-optimal at large photon
efficiencies. The latter architecture starts with a number-state
modulation, but is sensitive to losses in the propagation path,
and approaches the Holevo capacity only in the near field when
the transmitter-to-receiver coupling is high.

We characterize the performance of these communications
systems by their efficiency in utilizing available resources
to transmit information. The resources of interest are the
transmitted power and the bandwidth occupancy, or, more
generally, the number of dimensions (temporal, spatial, or
polarization) occupied by the signal. Let 75 denote the mean
photon cost per channel use, D the dimensional cost per
channel use (the number of dimensions required to span the
collection of possible transmitted symbols per channel use),
and C(fis, D) the channel capacity, the maximum rate of
information transmission, in bits per channel use. We define
the photon information efficiency (PIE) as

C
1, = — (bits/photon)
Ng
and the dimensional information efficiency (DIE) as
. c .o .
tqg = D (bits/dimension)

and we denote the bound on the achievable pairs (ip,iq) by

max iq

Cq 7 =
(i) 710, D|C (71a, D) /fLa=ip

In this paper we focus on the behavior of ¢4 at large i,,.

II. PRELIMINARIES

Here we review the formulation that converts free-space
propagation into a set of beamsplitter channels. Quasi-
monochromatic, paraxial propagation in vacuum through finite
transmitter and receiver apertures is represented by a linear
superposition integral given by

Er(p.t)= | hlp- p)Eo(p',t — L/c)dp' + Ly(p,t)
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Fig. 1. The normal-mode decomposition for quasimonochromatic, paraxial
free-space (i.e., vacuum) propagation. (a) The paraxial link geometry and
propagation of eigenmodes, and (b) the beamsplitter representation of a single
channel.

where Eq(p,t) for p € Ar is the baseband envelope of
a z-propagating +/photons/m”s-units quantum field operator
transmitted from the z = 0 aperture, £ (p,t) for p € Ag
is the corresponding quantum field operator received over
the z = L aperture, and ﬁv(p,t) is an auxiliary operator
in its vacuum (i.e., unexcited) state needed to preserve the
delta-function commutator brackets of the field operators.!
The propagation kernel is the well-known Huygens-Fresnel
Green’s function from classical paraxial optics, namely

N — L i2wL /o iT|p—p’ 2/(MoL
h(p_p):i)\oLe /o il [%/(Xo L)
Because paraxial propagation is a linear transformation of
the input field, a singular-value decomposition can be car-
ried out to represent the propagation as a set of parallel
(orthogonal) pure-loss channels, as shown in Fig. 1 [10],
[11]. This decomposition—also known as the normal-mode
decomposition [10], [11], [12]—results in a set of input eigen-
functions, {®,,(p’)}, that are complete and orthonormal over
the input aperture p’ € Ap. Upon propagation to the receiver
plane, each input eigenfunction ®,,(p’) is transformed into a
corresponding output eigenfunction ¢, (p)—where {¢,(p)}
also collectively form a complete and orthonormal basis on
the receiver aperture p € Agr—and is attenuated by a less-
than-unity singular-value /7, due to diffraction. The resultant
propagation model for the transmitter-plane field operator
describing each input mode is therefore equivalent to that
through a beamsplitter with photon-flux transmissivity 7,, [10].

IThe paraxial field operators satisfy [E2(py,t1), El(pz,tz)] =46(py —
p2)0(t1 —t2) and [E.(pq,t1), Ez(py, t2)] = 0 for any 0 < z < L [10].

An optical communication system’s link geometry can be
classified into two regimes, according to the distribution of the
singular values of its normal-mode decomposition. In the far
field regime there is only one eigenfunction (i.e., 771) whose
power coupling differs appreciably from 0. In contrast, in the
near field regime multiple 7,,’s are close to unity. For paraxial
propagation in vacuum, whether a particular link geometry is
in the far field or near field is determined solely by the Fresnel
number product

6]

where D < 1 corresponds to the far field, and Dp > 1
corresponds to the near field. In (1), Ar is the transmitter
aperture area, Ag is that of the receiver aperture, \g is the
center wavelength of the optical field, and L is the distance
between the transmitter and the receiver.

III. ULTIMATE LIMITS

In the remainder of this paper we focus on a single mode
of these parallel channels, which is modeled as a beamsplitter
with transmissivity 7. On the pure-loss channel, and in the
absence of background radiation, the bound on achievable
pairs (i,,cq) is given by the Holevo limit,

i = g(ﬁS)/ﬁs

p
G =Wl )

where g(z) = (1 + z)logy(1l + z) — xlogy(z), and 7
is the mean photon number coupled to the receiver. The
Holevo limit is achievable with coherent states and an optimal
measurement. We are interested in particular in the behavior
for zHOl > 1. In this regime we have [8]

ol & €27

(€))
which represents the ultimate achievable efficiency at large i,.
Let (if°'(np), ¢! (ny)) denote the ultimate efficiencies of
the pure- loss channel in the presence of background radiation
with mean photon number np. It has been shown that [13]

Ml (ny) > (g(s + 1) — g(ny)) /s @)
e (np) > iy (np)ig (5)

and it is conjectured that (4),(5) are met with equality [14]. We
will take this conjecture to be true in the remainder. zg"l(nb)

increases with 1/7, at large zHOl( p). For iy < ny we have

iy (n0) = logy (1 +1/m) + (1) /s
— logy(1+1/mp) ©)
ns—0
Hence if°!(ny) is bounded.

In the following sections we examine the performance of
a number of modulation and receiver architectures relative to
the Holevo limits.



IV. CONVENTIONAL ON-OFF KEYING (OOK) WITH
COHERENT STATES

We first consider coherent-state on-off-keying (OOK) mod-
ulation paired with an ideal photon counting receiver. Im-
plementations of this architecture have achieved the largest
photon efficiencies demonstrated to date. It will also serve as
a baseline for the systems that follow.

The OOK photon-counting channel is modeled as follows.
In a channel use, a slot of duration of 7" seconds, we transmit
either a pulse with photon flux equal to A (expressed in units
of photons/sec) with probability p, or no pulse—i.e., a photon
flux equal to 0—with probability 1 —p. The mean photon cost
per channel use is 7y = pAT. The bandwidth utilization may
be taken to be B = 1/T, such that the dimensional cost of
a channel use, the time-bandwidth product, is BT = 1. The
photon flux is incident on an ideal infinite-bandwidth photon-
counting photodetector. We consider the case where the signal
is received in the absence or presence of background noise
separately.

A. Noiseless Reception

In the absence of background, the output of the photodetec-
tor is a Poisson point process with rate either \ or 0, depending
on the transmitted symbol. Since detection of a single photon
is sufficient to unambiguously resolve the transmitted symbol,
the channel output may be classified into a binary outcome:
either no detection event occurs or at least one detection event
occurs. This channel is a Z-channel, illustrated in Fig. 2, with
€ = 1—e~*T the probability that at least one photon is detected
given that the incident photon flux is A.

€
prob. p 1 1

prob.1—p 0 0

Fig. 2. The input-output probability transition map for a Z channel with
erasure probability 1 — e.

The photon and dimensional efficiencies of this channel are
given by [15]
ho (ﬁs) — ho (6)

-O0K
7 —

v d(e)
ig" = nsd(e)ip™
where
1- ﬁs _
ha(re) = —logs(re) — (157 o1~ )
and
—In(1 —¢)

Let

OOK ( » ~O0K
¢y (ip) = max 1 7
d (i) FoseliOOK =i,

At large i,, we have?

2% ®)

hence, from (3),
ca (ip)
CgOK(Z'p)
at large 4,, and conventional OOK achieves a DIE that has
suboptimal parametric dependence on PIE, relative to the
optimal tradeoff predicted by the Holevo bound. In particular,

the gap between the optimal DIE and that achieved by standard
OOK grows linearly with increasing PIE.

~ 2.561i),

B. Thermal Noise

Suppose now the signal is received in the presence of multi-
mode thermal noise, with K noise modes coupling into the
photodetector, each with variance N. The count statistic of
non-pulsed and pulsed slots are, respectively, [16]

po(k; K) = <K+:_1> <1iN>K <1J]’VN>k

N (K-1) s o—ns/(1+N)
(1+ N)k+K Tk N(1+N)

p1(k; K) =

for k=0,1,2,..., where LéK_l) is the Laguerre polynomial
of order k and ns; = fs/p, the mean signal count in a pulsed
slot.

Let n, = KN. In the limit of large K with n; fixed, the
photon counting statistics approach the Poisson,

npe~ "t
po(n; K) —— == ©
K—oo n.
' . (nb + ns)ne—("b+ns)
pi(n K) —— — (10)

In practice, it is common that K > 1, and a Poisson channel
model is used. Let us suppose the Poisson approximation
holds, such that the channel is defined by (9),(10). Let ip™ ()
be the PIE of the Poisson OOK channel with mean n; noise
counts per slot. Then we have [17]

) > (14 my/ns) logy (1 +ns/my) — 1/1n(2) — =

Ns

ZgOK(
which is increasing with ng at large ns. Hence arbitrarily
large PIE can be achieved on the noisy Poisson OOK channel.
Presuming the conjectured Holevo limit, (6), holds, we have
a contradiction, and hence the Poisson approximation cannot
hold at large PIE for any finite K.

2We note that the asymptotic approximation (8) is equal to the asymptotic
formula for pulse-position modulation (PPM) and ideal photon counting [8],
confirming the well-known result that the efficiencies of PPM and OOK agree
at large PIE.



1) Poisson channel cq at large 1i,: It is, nonetheless,
instructive to investigate the behavior of the noisy Poisson
OOK channel at large i,. At large PIE the noisy Poisson OOK
channel bounds and is well approximated by the noisy Poisson
PPM channel. Let i)™ and 5™ be the PIE and DIE of the order
M noisy Poisson PPM channel, and

CI;PM(ip) =

Define the functions

- logy(M)(1— )
’Lp =

max iy

/ iPPM _;
M,ns|ifM=i,

ng
Ca = EPRZ/M*
where (nk, M*) satisfy

(0% + ma) In(1 + 0% /mp) — s = In(M*)(1 — ¢~)
Then for any pair (i;™,cj™), there exists a pair (ipy Ea) >
(i"ppM, ™) [17]. Hence ™ grows no faster in ip™ than ¢4. At

large i, we have
Eq ~npip exp(ip In(2) 4+ 1) x
. ( —npip In(2) exp(i, In(2) + 1) )
1 — exp(—ny exp(i, In(2) + 1))
and, altllough %p is not strictly bounded, ¢4 falls off as e~

at large 1, so that it is impractical to achieve large PIE on the
noisy Poisson OOK channel.

er

V. OOK WITH SINGLE-PHOTON SHUTOFF

We now consider a modification of conventional OOK
with ideal photon counting in the absence of background.
Recall that on this channel the detection of a single photon
is sufficient to unambiguously resolve the transmitted symbol.
Any additional detection events convey no more information.
Hence, if the transmitter knew the instant a photon were
detected at the receiver, it could stop transmitting the current
symbol, reducing the photon cost, with no change to the chan-
nel capacity. A modified—and idealized—receiver structure
that performs this operation is illustrated in Fig. 3, in which
the receiver provides delay- and noise-free feedback to the
transmitter, informing it to terminate the transmitted pulse as
soon as the first photon is detected. If no photons are detected,
either because vacuum was transmitted or because an erasure
event occurred, the receiver waits until the end of the 7T-second
window and then restarts anew. We refer to this system as OOK
with single-photon shutoff and use the shorthand notation 1S
in referring to its variables in the following analysis.

For this receiver architecture, the channel is still given by
the Z channel of Fig. 2. Hence the mutual information between
the input and output does not change, but now the mean photon
number per channel use has been reduced to
700K

d(e)

where 7 is the random duration of a pulse, n°0K = pAT is the
mean photon number of conventional OOK. Hence the single

'S = pAE[r] = p(1 — e 1) =

\ ideal
photodetector

e 7

Ne 1

>
T
instantaneous
shutoff ¢
Fig. 3. An ideal single-photon shutoff receiver, with feedback to the
transmitter.

photon shutoff system requires a factor d(e) fewer photons
than conventional OOK with the same (p, €).

The OOK single-photon shutoff system achieves this in-
crease in photon efficiency at a price of requiring additional
resources for the feedback channel and increased bandwidth
usage on the forward (optical) link. Here we limit our focus
to the bandwidth increase in the forward link, which results
from shortened average pulse durations.

The single-photon shutoff OOK pulse train consists of a
sequence of modulated pulses of random duration. The power
spectral density of the process is given by [15]

pA2T
(\T)? + (2nfT)?
—(2=2p)e M cos(2nfT) — p — pe= 2

+p(1-p)* Y 6(fT—k)>

k=—o0

S(f) = (2 —2\Te Msinc(2n fT)

where sinc(z) = sin(z)/z. Fig. 4(a) illustrates the power
spectral density for various A7, assuming p < 1, which is
valid for PIE > 1. In Fig. 4(b) we have plotted the mean
photon flux contained in |f| < A/(1 — e~ *T) as a function
of AT, which shows that to a very good approximation
90% of the total mean photon flux is contained within this
frequency band. This follows heuristically, as the reciprocal
of the average duration of a pulse at large AT is approxi-
mately 1/E[r] = A\/(1 — e=*T). In the remainder we take
1/E[r] = A/(1 —e=7T) to be the bandwidth of the single-
photon shutoff OOK scheme. This is also consistent with the
treatment of conventional OOK with pulse duration 7', wherein
90% of the mean photon flux is concentrated in a frequency
bandwidth of 1/T.

Given the bandwidth definition, the number of temporal di-
mensions per channel use—determined by the time-bandwidth
product—is given by
—In(1—¢)

T
T 1T T € = d(e)

dlS

Hence the photon and dimensional efficiencies of the single-
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photon shutoff OOK system are

ils = hQ(ﬁ) - h2(6)

i = e [ha(R) — ho(€)] = @Z’LS

Comparing these expressions to the corresponding ones for
conventional OOK, we have

;OO0K 1S

i i

a4 _ P _

1S T jOOK — d(e)
d P

i.e., for the same channel transition probability € and input
probability p, the modified OOK system with single-photon
shutoff has an increase in PIE by a factor of d(¢) and a
decrease in DIE by the same factor, relative to conventional
OOK. This is a favorable tradeoff when the log-domain curve
defined by the pair of points (log, i9°F,log, i9°F) has slope
less than —1. This occurs approximately at

ir, & 2logy e/d(e) < 2logy e (11)

Hence when i, > 2log, e =~ 2.885 bits/photon, single-photon
shutoff offers a favorable tradeoff between bits per photon and
bits per dimension.

Let

cP(ip) = max i}

(12)
n,e€[0,1]

A numerical evaluation of (12) is illustrated in Fig. V, showing
that OOK with single-photon shutoff yields DIE better than
conventional OOK when the PIE exceeds 2.22 bits/photon,
consistent with (11). The performance degradation at low PIE
is due to the high mean photon number in this regime. When
AT > 1, most pulses are terminated before the slot duration
ends and the information rate is near its ideal limit of 1 bit
per channel use. Consequently, the increase in the bandwidth
due to the premature termination of the pulse is not matched
by an equivalent increase in mutual information, causing a
degradation in the DIE relative to standard OOK.

10°

ultimate
1S+PC

= = =1S+PC asymp.
OOK+PC

DIE, ¢4 [bits/dimension]

10° 10’

PIE, i, [bits/photon]

Fig. 5. The (PIE,DIE) pairs for the Holevo bound (ultimate) (2), conventional
OOK with photon counting (OOK+PC) (7), OOK with single-photon shutoff
(1S+PC) (12), and its asymptotic approximation (1S+PC asymp.)(V)

At large i,, we have [15]
2—h2(5):|

i~ (i) |20

The factor in the square brackets is a function of € but not of
the photon efficiency i,. Hence the optimum e is independent
of the photon efficiency when ¢, > 1:
¢ = argmax2~"2(9) /d(e) ~ 0.876
e€[0,1]
yielding

clS ~0.274c8! (13)

at large 7,. Hence feedback not only enables higher DIE than
otherwise possible with conventional OOK, but also yields a
DIE which has the same parametric dependence as the Holevo
bound.

In the large i, regime (i, X 4bits/photon), the optimal €*
yields an erasure probability of (1 — €*) = 0.124, which
corresponds to X\1' =~ 2.087. That is, the optimal photon
flux at high PIE would cost 2.087 photons per pulse if the



transmission continued for the entire symbol duration 7'. The
single-photon shutoff strategy reduces the mean photon cost to
7~ 0.876 at the expense of an increase in spectral occupancy
by a factor of d(e*) = 2.383. The net DIE improvement
from this tradeoff, however, is significant. Unlike conventional
OOK, the asymptotic dimensional efficiency of OOK with
single-photon shutoff has the same parametric dependence
as the optimal Holevo bound. In particular, its asymptotic
DIE is inferior to the ultimate quantum limit by a constant
multiplicative factor of 0.274, whereas conventional OOK’s
asymptotic DIE is inferior to the ultimate quantum limit by a
factor that increases linearly in 4.

VI. OOK WITH SINGLE-PHOTON NUMBER STATES

Recall that the single-mode channel reduces to a beamsplit-
ter of transmissivity 7. In the limit that n = 1, the Holevo
capacity can be achieved by transmitting a number-state al-
phabet {|n) = 0,1,...} with a geometric distribution
p(n) = n%/(1 + ng)"*', where ng is the mean photon
number, and receiving the signal with an ideal photon-counting
receiver [18]. When ng < 1, the binary alphabet {|0),|1)}
suffers only a small loss relative to the Holevo limit. Here we
consider the performance of this binary number-state system,
and examine the degradation in a near-field communication
system wherein 7 = 1 holds for multiple modes.

Let the transmitter transmit |1) with probability p and |0)
with probability 1 — p. When the transmitter field mode is in
the vacuum state, |0), then the output of the beamsplitter is
also in a vacuum state. When the transmitter field mode is in
the number state |1), then the output field mode is in a mixed
state |1)(1|+ (1 —n)|0)(0|. Hence, an ideal photon counting
photodetector will yields conditional output probabilities

Pr(count = 1’ |1)sent
Pr(count = 0’ |1)sent

)=mn
)=1-1n

and the channel reduces to a Z-channel, with crossover
probability 1 — 7, illustrated in Fig. 6. We denote variables
pertaining to this architecture with the superscript INS.

n
prob. p 1 1
number state 1—7 photon
input count
prob.1—p 0 0

Fig. 6. The erasure channel that defines communication with the number-
state binary alphabet {|0), |1)}.

It follows that 7,5 and ¢S are identical to their counter-
parts in (coherent-state) OOK with single-photon shutoff, but
with € replaced by the channel transmissivity n. That is, the
photon and dimensional efficiencies per (detected) photon are

given by
';,NS = ha(7i) — ha(n)  bits/photon
ig> = nlha(n) — ha(1)]

= hy " (ip + ha(n))i, bits/dimension,  (14)

where i = pn is the probability that a photon is counted by
the receiver. Note that we normalize by the mean number of
detected photons, to be consistent with our prior definitions of
photon efficiency.
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Fig. 7. The numerically-evaluated DIE curve for OOK with single-photon

number states and ideal photon counting, as well as its asymptotic approxi-
mation at large PIE, are plotted for several different 7. (a) The numerically-
evaluated PIE versus DIE tradeoff curves (solid lines) and their asymptotic
approximations (dashed lines) at different 7. The Holevo bound, and the PIE-
DIE curves for conventional OOK with ideal photon-counting (OOK+PC)
are also plotted for comparison. (b) The cg"l /cg“S ratio for i, > 1, at
different 7. Dashed (red) line and dash-dotted (green) line denote asymptotic
approximations.

From (14), we see that fixing (n,i,) fixes /5, hence

cNS(iyim) = iNS(ip,m). Fig. 7(a) illustrates the pairs
(z;,NS cINS) for several values of 7. The slope of ¢} at large i,,

is greater than that of ¢, hence, for every n > 0 there exists
an iy(n), such that for all ip > i5(n), e (ipin) > 9O (ip).
However, iy (n) increases with decreasing 7).



For 7, > 1 we have

NS (i) ~ (ed,2 )22 ()

A celg=hz(n) (15)

Hence, as with OOK with single-photon shutoff, OOK with
single-photon number states achieves the same parametric
dependence as the ultimate efficiency, with a constant penalty
factor. In the OOK with single-photon shutoff scheme, that
penalty is roughly constant at large i,. Here the penalty is
a function of the channel transmissivity, 2_h2(”), which is
approximately equal to (1 — 7)'=7/e!="7 for n ~ 1, and
approximately equal to 7/e for n < 1. Figure 7(b) shows
the variation of this constant factor as a function of 7, along
with the aforementioned asymptotes. From Eqs. (13) and (15),
we see that at 7 ~ 0.534, the two schemes achieve the same
large 4, asymptote.

Since the efficiency of the single-photon number-state OOK
modulation is determined by the channel losses, we briefly
discuss typical power coupling that can be achieved in a
near-field link geometry. The normal-mode decomposition
for hard circular apertures gives rise to Prolate-spheroidal
eigenfunctions [19], and singular values that are not in closed
form. This is no longer the case if we replace the hard-pupil
apertures of the transmitter and receiver with Gaussian soft
apertures [20]. In particular, it can be shown that the input
and output eigenfunctions are Laguerre-Gaussian functions,
and there are m degenerate eigenvalues equal to 7, = 7"
form=1,2,..., where

_ 142Dp —/1+4Dp
- 2Dp

As an example, a near-field system with Ay = 1lum, L = 1km,
and equal-size soft Gaussian transmitter and receiver apertures
with e~! amplitude attenuation radius equal to 0.1m has a
Dpr = 250 3 For this case, the first 55 eigenvalues are greater
than 0.5, and the top 200 eigenvalues are greater than 0.28.

7o

VII. DISCUSSION

It is well known that the Holevo information limits may
be approached by encoding information in a coherent-state
alphabet, which at high photon information efficiencies is
well-approximated by a binary modulation, such as OOK.
However, we know only the behavior of the required corre-
sponding measurement on the optical codewords generated by
this encoding—no explicit receiver architecture is know for a
Holevo-bound-achieving measurement.

The state of the art realization of high PIE optical com-
munication is generalized OOK (implemented as high-order
PPM) in conjunction with a photon-counting receiver. In the
absence of background the DIE achievable with this scheme
is inferior to the Holevo limit by a factor that grows linearly
with the PIE. A commonly assumed Poisson approximation

3The Fresnel number product D, in Eq. (1), depends on the aperture area.
For a soft Gaussian aperture A(p) = e"p‘Q/ﬂ, where p is the 2D spatial
coordinate vector on the aperture plane and  is the e~ !-attenuation radius,
the effective aperture area is given by [ A%(p)dp = 7r2/2.

to the photon-counting measurement In the presence of multi-
mode background noise must be inaccurate at large PIE for any
number of noise modes, as it predicts unbounded PIE while
the (conjectured) Holevo limit is bounded. However, although
not strictly bounded, the Poisson OOK channel in noise has a
DIE that falls off doubly exponentially in PIE, such that, for
most practical purposes, large PIE on the noisy Poisson OOK
channel is also not achievable.

We investigated two methods to extend the efficiencies
achievable with a photon-counting receiver in the absence
of background noise. Each significantly improves on conven-
tional OOK at large PIE and achieves the same parametric
dependence as the Holevo limit, such that the degradation is
a constant factor relative to the Holevo limit at large PIE.
However, they each, as presented, require assumptions the
would make a practical implementation challenging.

The first approach, OOK with single-photon shutoff, as
presented requires a perfect feedback channel with no latency.
Incorporating a finite delay in the feedback channel is straight-
forward, but may limit the feasibility to scenarios where the
latency is a small fraction of the slot width. Moreover, we
assess no cost to the feedback channel. Although this is
consistent insofar as one typically doesn’t assess a power cost
due to operations at the receiver, it may not reflect the practical
issues related to establishing a feedback channel. While it
is apparent that all of these issues are pertinent to realizing
a communication system with the feedback, they should not
overshadow the underlying fundamental insight offered by this
feedback architecture: the asymptotic suboptimality of OOK
plus photon-counting in DIE is fundamentally due to energy
transmission that does not contribute to information transfer
once a photon is detected at the receiver. If the transmitter
could shutoff, via some ideal feedback or an oracle, at the
instant at which the receiver detects the first photon in a
slot, the energy conserved from shutting off the transmitter
is sufficient to achieve a DIE ¢!’ = 0.274c¢]°, which is
suboptimal by the constant factor 0.274.

The second approach we considered requires one to transmit
number states, {|0),|1)}, rather than coherent states. Unlike
coherent-state modulation, this architecture inherently pushes
the complexity to the transmitter by requiring on-demand
generation of a (nonclassical) single-photon number state in
a defined spatiotemporal and polarization mode, in addition
to requiring efficient transfer of this state from the transmitter
to the receiver. Nevertheless, if such a source were available,
the DIE is asymptotically c!NS = 27h2(m ol which is also
suboptimal by only a constant factor 2~"2(")_ This factor
now depends on the efficiency, n, with which the number
state is transmitted to the photodetector, where 7 refers to the
aggregate efficiency of transmitting a number state, including
transmitter optical losses, diffraction loss and absorption, the
receiver optical efficiency, and the photodetector quantum
efficiency. Although this scheme will always perform superior
to standard OOK at high enough PIE, the crossover point
moves out to higher values of PIE as n degrades. As a rule of
thumb, if n > 0.1, the crossover point is at approximately



PIE = 10bits/photon. Achieving 10% system transmission
efficiency, including all of the aforementioned factors, is in
general not trivial. However, with improving device tech-
nologies it may become feasible to achieve such efficiency
values. It is also worthwhile to point out that single-photon
number-state generation is an active area of research that
has produced several approaches to date, some of which are
better suited than others for high-PIE optical communication
applications [21].
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